Unexpectedly High Prevalence of Acquired von Willebrand Syndrome in Patients with Severe Aortic Stenosis as Evaluated with a Novel Large Multimer Index

Toshihiro Tamura1, Hisanori Horiuchi2, Masao Imai3, Tomohisa Tada4, Hiroki Shiomi3, Maiko Kuroda1, Shunsuke Nishimura1, Yusuke Takahashi1, Yusuke Yoshikawa1, Akira Tsujimura1, Masashi Amano1, Yukiko Hayama1, Sari Imamura1, Naoaki Onishi1, Yodo Tamaki1, Soichiro Enomoto1, Makoto Miyake1, Hirokazu Kondo1, Kazuaki Kaitani1, Chisato Izumi1, Takeshi Kimura3 and Yoshihisa Nakagawa1

1 Department of Cardiology, Tenri Hospital, Tenri, Japan
2 Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
3 Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
4 Department of Cardiovascular Medicine, Shizuoka General Hospital, Shizuoka, Japan

Aim: Severe gastrointestinal bleeding sometimes occurs in patients with aortic stenosis (AS), known as Heyde’s syndrome. This syndrome is thought to be caused by acquired von Willebrand syndrome and is characterized by reduced large von Willebrand factor (vWF) multimers. However, the relationship between the severity of AS and loss of large vWF multimers is unclear.

Methods: We examined 31 consecutive patients with severe AS. Quantitative evaluation for loss of large vWF multimers was performed using the conventional large vWF ratio and novel large vWF multimer index. This novel index was defined as the ratio of large multimers of patients to those of controls.

Results: Loss of large vWF multimers, defined as the large vWF multimer index \(\leq 80\%\), was detected in 21 patients (67.7\%). The large vWF multimer ratio and the large vWF multimer index were inversely correlated with the peak aortic gradient \(R^2 = -0.58, p = 0.0007\), and \(R^2 = -0.64, p < 0.0001\), respectively. Anemia defined as hemoglobin \(\leq 9.0\) g/dl was observed in 12 patients (38.7\%), who were regarded as Heyde’s syndrome. Aortic valve replacement was performed in 7 of these patients, resulting in the improvement of anemia in all patients from a hemoglobin concentration of 7.5 ± 1.0 g/dl preoperatively to 12.4 ± 1.3 g/dl postoperatively \((p < 0.0001)\).

Conclusions: Acquired von Willebrand syndrome may be a differential diagnosis in patients with AS with anemia. The prevalence of AS-associated acquired von Willebrand syndrome is higher than anticipated.

See editorial vol. 22: 1113-1114

Key words: Aortic stenosis, Gastrointestinal bleeding, Heyde’s syndrome, Acquired von Willebrand syndrome, Large vWF multimer index

Introduction

The prevalence of valvular aortic stenosis (AS) has been increasing in aging societies in developed countries. The prognosis of patients AS is poor once they suffer from angina pectoris, syncope, or heart failure\(^1\). These patients are sometimes affected by another severe complication of massive gastrointestinal bleeding. Although AS was first reported to be associated with gastrointestinal bleeding by Dr. Heyde in 1958\(^2\), Heyde’s syndrome is not widely known. Recently, the mechanism of Heyde’s syndrome has
been identified to be bleeding from gastrointestinal angiodysplasia, enhanced by AS-associated acquired von Willebrand syndrome \(^3\).

In hemostasis and thrombosis, von Willebrand factor (vWF) plays multiple roles. When endothelial cells are lost, vWF is recruited to subendothelial collagen fibers and is exposed to the blood stream. Further, vWF changes its conformation, causing platelets to roll on the vessel wall by the interaction of collagen-associated vWF with the GPIb complex on the surface of platelets. When vWF is produced in endothelial cells and megakaryocytes, it forms a huge multimer \(^4\). The vWF multimer is shear stress-dependently cleaved by the plasma protease a disintegrin and metalloproteinase with a thrombospondin-type motif, member 13 (ADAMTS13) into smaller pieces \(^5\). Consequently, vWF multimers are present in the serum of healthy persons as 2–80 mers \(^4\). The potency for inducing platelet thrombus formation is dependent on the vWF multimer size. Patients lacking ADAMTS13 are known to contain ultra-large vWF multimers and exhibit hereditary thrombotic thrombocytopenic purpura because of excessive platelet thrombus formation in the microcirculation, known as the Upshaw–Shulman syndrome \(^5\). In contrast, loss of large vWF multimers causes bleeding tendencies, classified as von Willebrand syndrome type IIA \(^6\).

In patients with AS, vWFs are exposed to extremely high shear stress at the site of the stenotic aortic valve, which causes exposure of cleavage sites of vWF by ADAMTS13. Accordingly, loss of large vWF multimers occurs, which is von Willebrand syndrome type IIA \(\text{per se}^2\).

However, the prevalence of acquired von Willebrand syndrome and Heyde’s syndrome in the clinical setting has not yet been adequately evaluated. Furthermore, the relationship between the severity of AS and the loss of large vWF multimers has not been adequately determined \(^7\). Therefore, we systematically evaluated 31 consecutive cases of severe AS by focusing on vWF multimer formation.

Methods

Study Population

The study population consisted of 31 consecu-
tive hospitalized patients with severe AS. Severe AS was defined as an aortic valve area $\leq 1.0 \text{ cm}^2$, peak aortic velocity $>4.0 \text{ m/s}$, or a mean pressure gradient $>40 \text{ mm Hg}$ as determined by Doppler echocardiography. The peak aortic pressure gradient was calculated with the modified Bernoulli equation. We defined anemia as a patient with hemoglobin concentrations $<9.0 \text{ g/dl}$. Clinical courses of patients with anemia were evaluated from patients’ clinical charts or by contacting the patients. Data of upper and lower endoscopy examinations were carefully evaluated by experts to identify angiodysplasia. Indication for an endoscopic study was based on the discretion of the attending physicians. Definite Heyde’s syndrome was defined as severe AS with anemia and endoscopically confirmed angiodysplasia. Possible Heyde’s syndrome was defined as severe AS with anemia without apparent cause of anemia, such as cancer and gastric ulcer, although angiodysplasia was not confirmed by the endoscopic examination.

The study was performed according to the Declaration of Helsinki. The study protocol was approved by the institutional ethics committee. Written informed consent was obtained from each patient.

Evaluation of Large vWF Multimers

The multimeric structure of vWF was analyzed according to the method of Ruggeri and Zimmerman 8, by SRL Co., Tokyo, Japan. Quantitative evaluation for loss of large vWF multimers was performed with the following two parameters: the “large vWF multimer ratio” and the “large vWF multimer index.” Large vWF multimers were quantified from images of vWF multimer analysis vWF by gel electrophoresis (Fig. 1). Using ImageJ, the central one-third of the lane was scanned. vWF multimers were divided into four parts (large, medium, small, and smallest multimers). First, we calculated the large vWF multimer ratio as the ratio of the large vWF multimer area to the total vWFs. We calculated the large vWF multimer index, proposed in this study, which was defined as the ratio of the large multimer area of a patient to that of a control whose plasma was analyzed in the next lane of the same vWF multimer analysis (a Western blot; Fig. 1).

Statistical Analyses

All statistical analyses were performed using JMP version 7 (SAS Institute Inc., Cary, NC, USA). All continuous variables are expressed as the mean value ± standard deviation (SD). Intergroup comparison of continuous variables was performed using the Student’s *t*-test or, if not normally distributed, Wilcoxon’s two-sample test. Categorical variables are presented as frequency counts and percentages, and intergroup comparisons of categorical variables were analyzed using the chi-square test. A *p* value <0.05 was considered statistically significant.

Results

Study Population

Clinical characteristics and echocardiographic and hematological parameters of 31 patients with severe AS are shown in Table 1. As expected, the patients were relatively old at a mean age of 78.7 ± 8.4 years. The mean peak aortic gradient was 85.1 ± 29.4 mm Hg and the mean aortic valve area was 0.63 ± 0.17 cm2.

Severity of AS and Loss of Large vWF Multimers

As shown in Fig. 2a, the large vWF multimer ratio was inversely correlated with the peak aortic gradient ($R = -0.58, p = 0.0007$). However, the large vWF multimer ratios of control subjects, which were analyzed in the next lane of each patient ($n = 31$), were varied ($27 ± 5.4\%$; maximum, 41.0%; minimum, 8.6%), and a rather large portion overlapped with those of patients’ To overcome the issue of overlap, we evaluated the large vWF multimer index. It was inversely correlated with the peak pressure gradient ($R = -0.64, p < 0.0001$; Fig. 2b), and was positively

Table 1. Clinical characteristics of the 31 enrolled patients

<table>
<thead>
<tr>
<th>Patient number</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>12 (38.7)</td>
</tr>
<tr>
<td>Age (year)</td>
<td>78.7 ± 8.4</td>
</tr>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>9.5 ± 2.4</td>
</tr>
<tr>
<td>Hemoglobin < 9.0 g/dl</td>
<td>38.7% (12)</td>
</tr>
<tr>
<td>Platelet ($\times 10^4/\mu l$)</td>
<td>15.9 ± 5.5</td>
</tr>
<tr>
<td>vWF antigen (%)</td>
<td>179.9 ± 50.0</td>
</tr>
<tr>
<td>Activity of vWF (%)</td>
<td>134.7 ± 49.2</td>
</tr>
<tr>
<td>Activity of ADAMTS13 (%)</td>
<td>73.5 ± 27.9</td>
</tr>
</tbody>
</table>

Echocardiography findings

Left ventricular ejection fraction (%)	58.8 ± 12.9
Left ventricular diastolic dimension (mm)	46.5 ± 7.4
Peak aortic velocity (m/s)	4.6 ± 0.8
Peak aortic gradient (mm Hg)	85.1 ± 29.4
Aortic valve area (cm2)	0.63 ± 0.17
Upper gastrointestinal endoscopy	35.5% (11)
Lower gastrointestinal endoscopy	25.8% (8)
Aortic valve replacement	54.8% (17)

Values are mean ± SD or n (%).

vWF = von Willebrand factor.

ADAMTS13 = a disintegrin and metalloproteinase with a thrombospondin-type motif, member 13.
Correlated with the aortic valve area ($R=0.47$, $p=0.0007$; Fig. 2c). The loss of large vWF multimers, defined as the large vWF multimer index $<80\%$, was detected in 21 examined patients with severe AS (67.7\%). The severity of the loss was strongly correlated with the peak aortic gradient. A stronger correlation was obtained in the analysis with the large vWF multimer index compared with the large vWF multimer ratio.

Factors Affecting Loss of Large vWF Multimers

To evaluate factors affected by the large vWF multimer index, we divided patients into the high index group ($n=16$) and the low index group ($n=15$) using the mean large vWF multimer index value of 73.2\%. As shown in Table 2, only the peak aortic gradient (102.0 ± 27.8 mm Hg in the high index group vs 65.0 ± 19.8 mm Hg in the low index group, $p=0.0009$) was significantly associated with the index levels, whereas aortic valve area, ADAMTS13 activity, vWF antigen level, and vWF activity level showed no associations.

Clinical Course of Patients with Anemia

We observed that hemoglobin concentrations in all 31 patients with severe AS were low (mean, 9.5 ± 2.4 g/dl). Anemia was present in 12 patients (38.7\%, Table 1). Among 12 patients with anemia, angiodysplasia was detected in four patients who had “definite Heyde’s syndrome,” and the remaining 8 patients had no apparent findings suggestive of cancer or ulcers, and were diagnosed with “possible Heyde’s syndrome” (Table 3). Three patients who received aortic valve replacement among these 8 patients showed improved anemia. These 12 patients with anemia were consid-
Quantitative Evaluation of Large vWF Multimers

vWFs are produced as a giant multimer from endothelial cells and megakaryocytes. They are known to be degraded by its specific cleaving enzyme, ADAMTS13, in blood stream. The cleavage is shear stress dependent because the cleavage site of vWF is exposed due to its conformational change in a high shear stress condition. Therefore, an excess cleavage of vWF is proposed to occur in cardiovascular diseases such as aortic stenosis, where tremendously high shear stress is generated when blood passes through the stenotic valve.

In this study, we evaluated the loss of large vWF multimers using the large vWF multimer index, which was defined as the ratio of the large multimer ratio of a patient to that of a control. We propose that this novel index is more useful for the diagnosis of hematological acquired von Willebrand disease type IIA than previously used vWF mutimer ratios. This is because the previous ratios were widely distributed and a large portion of them in patients with AS overlapped with those in healthy subjects because of an inevitable variation of immunostaining. Furthermore, the large vWF multimer index showed a strong inverse correlation with the severity of AS. Using this index, we showed that most of our patients with severe AS exhibited acquired von Willebrand syndrome type IIA, at least hematologically. The severity of acquired von Willebrand syndrome type IIA was dependent on the severity of AS and was more strongly correlated with the maximal

Table 3. Clinical characteristics and course of the 12 patients with anemia

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Hemoglobin (g/dl)</th>
<th>Peak aortic gradient (mm Hg)</th>
<th>Ejection Fraction (%)</th>
<th>Aortic valve area (cm²)</th>
<th>Multimer Index (%)</th>
<th>History of massive gastrointestinal bleeding</th>
<th>Location of Angiodysplasia</th>
<th>Definite Heyde's syndrome</th>
<th>Possible Heyde's syndrome</th>
<th>Aortic valve replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>80</td>
<td>6.6</td>
<td>108</td>
<td>65</td>
<td>0.60</td>
<td>53.6</td>
<td>No</td>
<td>Colon</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>78</td>
<td>6.9</td>
<td>127</td>
<td>60</td>
<td>0.48</td>
<td>54.5</td>
<td>Yes</td>
<td>Small intestine</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>80</td>
<td>8.6</td>
<td>169</td>
<td>43</td>
<td>0.30</td>
<td>44.7</td>
<td>No</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>86</td>
<td>8.3</td>
<td>80</td>
<td>52</td>
<td>0.64</td>
<td>87.0</td>
<td>No</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>77</td>
<td>8.4</td>
<td>108</td>
<td>60</td>
<td>0.74</td>
<td>76.4</td>
<td>No</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>80</td>
<td>7.0</td>
<td>77</td>
<td>62</td>
<td>0.54</td>
<td>57.7</td>
<td>Yes</td>
<td>Small intestine</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>90</td>
<td>6.2</td>
<td>59</td>
<td>45</td>
<td>0.81</td>
<td>83.8</td>
<td>Yes</td>
<td>Colon</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>82</td>
<td>7.9</td>
<td>76</td>
<td>56</td>
<td>0.77</td>
<td>74.2</td>
<td>Yes</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>89</td>
<td>6.2</td>
<td>83</td>
<td>57</td>
<td>0.86</td>
<td>73.2</td>
<td>Yes</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>80</td>
<td>6.3</td>
<td>80</td>
<td>66</td>
<td>0.50</td>
<td>66.3</td>
<td>Yes</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Male</td>
<td>77</td>
<td>6.3</td>
<td>108</td>
<td>90</td>
<td>0.50</td>
<td>90.1</td>
<td>No</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Female</td>
<td>90</td>
<td>6.3</td>
<td>100</td>
<td>95.1</td>
<td>0.37</td>
<td>95.1</td>
<td>No</td>
<td>unknown</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Discussion

Main Findings

We systematically examined vWF multimer formation in 31 patients with severe AS. This study showed that 1) most patients showed hematologically acquired von Willebrand syndrome type IIA, 2) the prevalence of definite/possible Heyde’s syndrome was as high as 38.7%, 3) loss of large vWF multimers was correlated with the severity of AS, and 4) severe AS was often complicated with anemia, which was improved in most patients after successful aortic valve replacement.

Quantitative Evaluation of Large vWF Multimers

vWFs are produced as a giant multimer from endothelial cells and megakaryocytes. They are known to be degraded by its specific cleaving enzyme, ADAMTS13, in blood stream. The cleavage is shear stress dependent because the cleavage site of vWF is exposed due to its conformational change in a high shear stress condition. Therefore, an excess cleavage of vWF is proposed to occur in cardiovascular diseases such as aortic stenosis, where tremendously high shear stress is generated when blood passes through the stenotic valve.

In this study, we evaluated the loss of large vWF multimers using the large vWF multimer index, which was defined as the ratio of the large multimer ratio of a patient to that of a control. We propose that this novel index is more useful for the diagnosis of hematological acquired von Willebrand disease type IIA than previously used vWF mutimer ratios. This is because the previous ratios were widely distributed and a large portion of them in patients with AS overlapped with those in healthy subjects because of an inevitable variation of immunostaining. Furthermore, the large vWF multimer index showed a strong inverse correlation with the severity of AS. Using this index, we showed that most of our patients with severe AS exhibited acquired von Willebrand syndrome type IIA, at least hematologically. The severity of acquired von Willebrand syndrome type IIA was dependent on the severity of AS and was more strongly correlated with the maximal
fraction gradually decrease their maximal pressure gradient. These results indicate that loss of large vWF multimers is strongly affected by high shear stress, as pressure gradient (Fig. 2b) than with the narrowed aortic valve areas (Fig. 2c). This may be related to the fact that patients with severe AS with a low ejection fraction gradually decrease their maximal pressure gradient. These results indicate that loss of large vWF multimers is strongly affected by high shear stress, as

Fig. 3. vWF multimer analysis before and after aortic valve replacement in case 3 showing recovery of large vWF multimers after the operation.

Fig. 4. Clinical course and transition of hemoglobin levels in case 6. White arrow head, capsule endoscopy; black arrow head, aortic valve replacement; black arrow, blood transfusion.
Prevalence and Diagnosis of Heyde’s Syndrome

The origin of gastrointestinal bleeding in patients with Heyde’s syndrome is reported to be angiodysplasia, which can develop in the gastrointestinal tract\(^1\). Fig. 5a shows typical colonic angiodysplasia in case 1. Among 12 enrolled patients with anemia, angiodysplasia was detected only in 4 patients. The reason for this failure to observe angiodysplasia could be because of low rates of performance of endoscopic examination. Another reason could be because the origin of bleeding may not have been the stomach or colon, but the small intestine. In general, we do not often perform endoscopic examination of the small intestine. Two patients showed angiodysplasia in the small intestine (Fig. 5b), and one of two (case 2) patients showed angiodysplasia in the intestine and colon. Therefore, we consider that a complete endoscopic study, including not only upper and lower endoscopic studies but also capsule endoscopy for examining the small intestine is required to identify the origin of bleeding in Heyde’s syndrome patients.

Impact of Acquired von Willebrand Syndrome IIA in Other Cardiovascular Diseases

Acquired von Willebrand syndrome IIA may be caused by high shear stress in blood flow. In addition to aortic stenosis, several cardiovascular diseases may expected theoretically. Therefore, patients with severe AS are likely to have anemia, even though no apparent major gastrointestinal bleeding develops.

Treatment and Prognosis of Patients with Heyde’s Syndrome

Surgical aortic valve replacement and transcatheter aortic valve implantation can be performed in appropriately selected high-risk patients with good outcomes\(^9\). Radical therapy for acquired von Willebrand disease is the surgical aortic valve replacement\(^10\). Furthermore, transcatheter aortic valve implantation can be effective for treating Heyde’s syndrome patients at a high risk of aortic valve implantation\(^11\). A recovery of reduced large vWF multimers has been observed after an operation in cases 2\(^2\) and 3 (Fig. 3) in our study, as shown previously\(^7\). Seven patients with anemia underwent this operation without severe issues and haemoglobin concentrations recovered in all 7 patients. Without an operation, patients would suffer from repetitive bleeding, which occurred in case 6 (Table 3). Therefore, a radical operation should be performed, despite a tendency for bleeding in treatment of AS with gastrointestinal bleeding caused by acquired von Willebrand syndrome type IIA, namely Heyde’s syndrome.
cause high shear stress. Acquired von Willebrand syndrome IIA has been reported in patients with hypertrophic obstructive cardiomyopathy, congenital structural cardiac diseases, pulmonary hypertension, and mitral stenosis. Furthermore, mechanical circulatory support has drastically advanced and contributes much to the treatment of severe heart failure and it is inevitable that high shear stress is generated inside the pumps used in the devices. Acquired von Willebrand syndrome IIA has been reported in patients treated by LVAD and ECMO. The incidence of the hematological abnormality and the related bleedings, situations prone to cause bleeding, and proper treatment for the bleedings are unclear. It is urgently important to clarify these to advance cardiovascular medicine.

Study Limitations
There are several limitations to the present study. First, this study comprised a relatively small number of patients with an underpowered design. Therefore, this study did not allow us to interpret ADAMTS13 activity between the high and low large vWF multimer indices. However, patients in the low index group tended to show higher ADAMTS13 activity than those in the high index group. A larger study is necessary to further validate the current findings. Second, an endoscopic examination was not systematically performed in all patients. This relatively low performance rate of endoscopic examination may have caused underdiagnosis of angiodysplasia. Third, vWF multimer analysis was only performed once at admission. Fourth, it is difficult to exclude the possibility that anemia was caused by other factors such as iron and folic acid/vitamin B12 deficiency, chronic inflammatory disease, or chronic renal deficiency besides the acquired von Willebrand syndrome. However, we could not completely evaluate all the possibilities because of the data obtained was incomplete.

Conclusion
Acquired von Willebrand syndrome may be considered as a differential diagnosis in patients with AS with anemia. The prevalence of acquired von Willebrand syndrome in patients with AS is relatively high.

Funding Sources
None.

Disclosures
The authors have no relationships or conflicts to disclose.

References

