The Nogo-66 receptor: focusing myelin inhibition of axon regeneration

Aaron W. McGee and Stephen M. Strittmatter

Departments of Neurology and Neurobiology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520, USA

CNS myelin inhibits axonal outgrowth in vitro and is one of several obstacles to functional recovery following spinal cord injury. Central to our current understanding of myelin-mediated inhibition are the membrane protein Nogo and the Nogo-66 receptor (NgR). New findings implicate NgR as a point of convergence in signal transduction for several myelin-associated inhibitors. Additional studies have identified a potential coreceptor for NgR as p75NTR, and a second-messenger pathway involving RhoA that inhibits neurite elongation. Although these findings expand our understanding of the molecular determinants of adult CNS axonal regrowth, the physiological roles of myelin-associated inhibitors in the intact adult CNS remain ill-defined.

Nogo
The IN-1 monoclonal antibody was generated against a fraction of myelin enriched for inhibitory activity [7], and it improves axon outgrowth and functional recovery following injury when infused into the lesion site in several injury models [6,9,10]. Three groups identified the Nogo gene and the protein that corresponds to the IN-1 antigen, and demonstrated inhibition of axon growth in vitro with recombinant Nogo protein [11–13]. Nogo is differentially spliced to generate three proteins with alternative N termini. The longest isoform is termed Nogo-A and contains a unique sequence (‘amino-Nogo’) with a large percentage of acidic residues. The C terminus of Nogo has homology to the reticulon family of proteins and contains two predicted transmembrane domains and a short extracellular loop. Northern analysis has shown the three Nogo isoforms to have overlapping distributions: Nogo-A is predominantly expressed in the CNS, Nogo-B is a minor isoform and Nogo-C is enriched in the periphery, especially skeletal muscle [14]. Nogo-A is expressed by CNS myelin-forming oligodendrocytes but not by peripheral Schwann cells [14–16], and can be observed in immunoelectron micrographs at the innermost adaxonal and outermost myelin membranes [14,15]. In addition, Nogo-A is expressed in a range of central and peripheral nerves [14–16].

Interestingly, both amino-Nogo and a 66 amino acid segment within the extracellular loop (Nogo-66) have been reported to inhibit neurite outgrowth in vitro. The topology of Nogo, predicted from amino acid composition, immunohistochemistry [13] and homology to the reticulons, is such that the N terminus (containing amino-Nogo) and the C terminus are cytosolic, whereas the short 66 amino acid axon-inhibitory loop between the transmembrane domains protrudes into the luminal or extracellular space. Selective blockade of Nogo-66 with a 40 amino acid peptide derived from the same region (the Nogo extracellular peptide, NEP1–40), partially blocks the inhibitory activity of CNS myelin, and improves locomotor activity when infused into the intrathecal space following a dorsal hemisection injury [17]. However, administration of antibodies directed against the N-terminal domain can induce axon sprouting from uninjured neurons [18] and also might promote functional recovery. One interpretation of the observation that both amino-Nogo and Nogo-66 are inhibitory is that Nogo-66 might serve to inhibit axon sprouting and outgrowth subsequent to myelination, whereas amino-Nogo is an additional inhibitory factor presented by ruptured myelin membranes after injury. Alternatively, a proportion of Nogo-A might adopt a second topology, in which amino-Nogo is extracellular, and then both of these regions could inhibit regeneration.

Nogo receptor
A protein that interacts with Nogo-66 was identified by an alkaline-phosphatase (AP)-fusion-protein expression screening strategy [19]. This protein binds with high (nanomolar) affinity to both AP and glutathione-S-transferase (GST) proteins fused to Nogo-66. Transfection of the cDNA encoding this putative receptor into retinal ganglion
MAG and OMgp are ligands for NgR

Unexpectedly, at least two other inhibitory components of myelin, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp), also bind to NgR (Fig. 1). MAG was identified as an NgR-interacting protein in an expression screen for an NgR coreceptor [24] and in directed binding studies [25]. Similarly, the NgR was obtained in a screen for proteins that bind to OMgp [26]. NgR is necessary for inhibition of axon growth by MAG, OMgp and Nogo-66 in vitro, and expression of NgR commits insensitive neurons to a MAG-, OMgp- and Nogo-66-sensitive state [20,24,26]. By contrast, amino-Nogo does not appear to interact with NgR. All three ligands (Nogo, MAG and OMgp) are reported to bind to the region of NgR that contains the leucine-rich repeats (LRRs) and flanking regions (Fig. 1; Box 1).

OMgp was recently identified as a potent inhibitor in CNS myelin [26], although it was characterized originally as a GPI-linked protein expressed by oligodendrocytes and neurons that binds to peanut agglutinin [27–29]. MAG has been known to inhibit neurite outgrowth in vitro for some time [30,31], and MAG-deficient mice have been generated and characterized [32–34]. The inhibitory activity of myelin membranes from mice lacking MAG is indistinguishable from that of wild-type mice [33]. There is limited evidence that MAG ‘knockout’ mice have some increased regenerative capacity in the PNS but not the CNS [35], although the primary phenotype of the MAG mutant mice is a subtle defect in myelination [32,34]. Mice deficient for Nogo and OMgp have not yet been described but the convergence of these disparate inhibitors on the NgR provides an opportunity to discriminate the relative contribution of these proteins and myelin-mediated inhibition to impeding axonal regeneration.

p75NTR is a coreceptor for NgR

Extrapolating from recent observations that MAG-dependent inhibition of neurite outgrowth and activation of RhoA are impaired in neurons from p75NTR-mutant mice [36], and that MAG is a ligand for NgR [24,25], two groups have examined the possibility that p75NTR might be a coreceptor for NgR [37,38]. These studies demonstrated that at least a fraction of p75NTR associates with NgR, as the two proteins can be co-immunoprecipitated from heterologous cells and cerebellar extracts. The decrease in average neurite length observed when neurons are cultured in the presence of myelin membranes, or with any of the three NgR ligands, is attenuated in cerebellar granule neurons transfected with a ‘dominant-negative’ p75NTR construct that lacks the cytosolic domain of the receptor, and in neuronal cultures to which soluble p75NTR-Fc fusion protein had been added, suggesting that p75NTR function is required for inhibition [37]. A compelling result is that CGNs from p75NTR−/−-mutant mice are not responsive to GST–Nogo-66, OMgp–AP, MAG–Fc ...

Fig. 1. Myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp) and Nogo-66 are ligands for the Nogo-66 receptor (NgR). MAG, OMgp and Nogo-66 are all expressed by oligodendrocytes and bind to NgR. These ligands do not share any recognized protein domains. MAG contains IgC2 and Ig-like domains; OMgp has five leucine-rich repeats and an N-terminal flanking region. The C terminus is serine/threonine-rich (not shown). Domains have not been identified in Nogo-A. MAG binds to specific gangliosides, including GT1b, in addition to NgR. The Nogo-66 region (dark blue) binds to NgR. Amino-Nogo (light blue) is also inhibitory to neurite outgrowth and might be localized extracellularly in an alternative topology. The receptor for amino-Nogo has not been identified.
Box 1. Molecular characterization of ligand–receptor interactions

The Nogo-66 receptor (NgR) is a leucine-rich repeat (LRR) protein. It contains eight LRRs flanked by cysteine-rich regions (Fig. 1). A unique sequence precedes the C-terminal consensus sequence for the glycosylphosphatidylinositol (GPI) anchor. LRRs are present in a variety of proteins with diverse cellular functions but are believed to mediate protein interactions in most cases [57,58]. LRRs are not generally considered to be dimerization domains but evidence suggests that NgR can multimerize with unclear functional consequences [22]. The flanking regions and all eight LRRs are required for binding Nogo-66 [22]. This finding is not unexpected, as regions flanking LRR regions are often an integral part of these domains [58]. The interaction between Nogo-66 and NgR is antagonized by a peptide containing a fragment of the Nogo-66 sequence, NEP1–40 [17]. Deletion studies indicate that myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp) also bind to the region containing the cysteine-rich flanking regions and LRRs. Whether or not NEP1–40 blocks the binding of these ligands to NgR has not been determined. OMgp contains a smaller group of LRRs and a serine/threonine-rich region proximal to the GPI moiety. Similarly, p75NTR is a coreceptor for both the trk family of receptors and NgR. Both the trks and NgR contain LRRs but the binding sites of p75NTR to the trks and NgR have not been identified.

or CNS myelin membranes. It has not yet been determined whether transfection of a full-length p75NTR construct rescues the inhibitory response of neurons from p75NTR-mutant mice to these ligands. Whether p75NTR is expressed in all injured adult CNS neurons that are inhibited by myelin is not well defined; additional NgR coreceptors might be expressed in some neurons. It will be of great interest to examine the role of p75NTR in limiting axon regeneration and functional recovery after CNS injury in vivo. If p75NTR is the only coreceptor of NgR, then the result will be as dramatic as anti-Nogo-antibody and NgR-antagonist studies.

p75NTR is known to interact with a broad variety of ligands and intracellular proteins but, foremost, it is a coreceptor for neurotrophins with the trk family of receptor tyrosine kinases [39,40]. Pretreatment of cultured dorsal root ganglia and cerebellar granule neurons with specific neurotrophins abolishes the MAG-dependent inhibition of neurite outgrowth from these neurons [8] (Fig. 2). At first glance, it might seem paradoxical that p75NTR is required for the inhibition of outgrowth by myelin-associated factors (as a coreceptor with NgR) but contributes to repressing this inhibition (as a coreceptor with trkB or trkC). An improved understanding of the molecular basis for the interaction of p75NTR with these proteins might help to resolve this issue (Box 1). As an NgR coreceptor, p75NTR is expressed in cis with NgR in neurons and in trans with myelin proteins. The well-documented roles of p75NTR in myelin-forming Schwann cells and oligodendrocytes [40–42] indicate that interactions in cis with myelin components and in trans with neuronal NgR must also be considered.

Rho-based signaling

Downstream of the NgR complex, the small G protein Rho appears to provide a major link to cytoskeletal regulation [43]. Data indicate that MAG activates RhoA by increasing the proportion of the protein bound to GTP [36]; Nogo-66 and myelin utilize this same signaling pathway [44]. The p75NTR could provide a direct link to RhoA [45], or there might be additional, as yet unidentified, Rho-specific guanine-nucleotide exchange factors (GEFs) or GTPase-activating proteins (GAPs) involved in signal transduction. Pharmacological studies in vitro and in vivo indicate that downstream of RhoA, the
Myelin-regulated aspects of myelination involve more than hindering neuronal regeneration. MAG regulates aspects of myelination through axonal growth cone collapse: Nogo, OMgp and MAG. The convergence of these three disparate myelin-associated components onto one receptor suggests that NgR could be a crucial regulator of neurite outgrowth. NgR is attached to the plasma membrane by a GPI moiety, indicating that a transmembrane coreceptor translates signals to the cytoskeleton. p75^{NTR} appears to be a coreceptor with NgR in at least some circumstances: it binds NgR and is required for myelin-mediated inhibition in vitro. Downstream of NgR and its ligands, the GTPase RhoA promotes growth cone collapse and inhibits neurite extension. The hypothesis that myelin plays a role in regulating axonal sprouting and plasticity in the adult brain can now be tested with these defined signal-transduction components.

The recent identification of this pathway, from myelin to axonal NgR to intracellular second messengers, provides an opportunity to develop rational interventions to promote CNS axon regeneration after injury. Evidence suggests that targeting the myelin-derived Nogo ligand with a blocking antibody is effective [51,52] but this approach might be limited by the presence of the three independent inhibitors within myelin. The NgR provides an attractive therapeutic target because of its essential role, high-affinity interactions and neural specificity. A peptide antagonist is effective in promoting functional recovery [17] but a small-molecule antagonist of NgR or a broad-spectrum antagonist blocking Nogo, MAG and OMgp might be more effective. p75^{NTR} might be a less attractive target, owing to its numerous functions. There is also interest and demonstrated efficacy for blockade of Rho or Rho Kinase [46,53] but, as these signaling molecules are present in all cell types of the body, specificity is a concern. The multiple potential points of attack in this pathway increase the likelihood that it will be targeted by clinically effective axon-regeneration agents.

However, myelin is not the only source of axon outgrowth inhibition. CSPGs and other components of the glial scar [3] inhibit neurite outgrowth, and the regenerative capacity of projection neurons is relatively feeble. Chondroitinase ABC digests CSPGs; when infused into the CNS it promotes axon elongation and improves functional recovery following injury [49], as do neurotrophins [54] and cyclic nucleotide analogs [55,56]. These beneficial effects might be additive with methods for...
repression of myelin-linked inhibition. Understanding of how signals from extracellular factors associated with myelin and the injury site are integrated with neurotrophins and outgrowth promoting signals to regulate axon elongation should further facilitate the development of interventions to ameliorate the effects of spinal cord injury, head trauma, stroke and multiple sclerosis.

References

56 Qiu, J. et al. (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903
